On uniform Roe algebras of locally finite groups

Hung-Chang Liao

University of Münster

August 10, 2017 YMC*A University of Copenhagen

Hung-Chang Liao (WWU)

Roe algebras of locally finite groups

August 10, 2017

- G countable discrete group
- S finite generating set such that $e \in S$ and $S^{-1} = S$
- d(g, h) = smallest number of generators connecting g and h

- G countable discrete group
- S finite generating set such that $e \in S$ and $S^{-1} = S$
- d(g, h) = smallest number of generators connecting g and h

Then $d: G \times G \rightarrow \mathbb{R}$ is a *proper*, *left-invariant* metric on *G*.

- G countable discrete group
- S finite generating set such that $e \in S$ and $S^{-1} = S$
- d(g, h) = smallest number of generators connecting g and h

Then $d: G \times G \rightarrow \mathbb{R}$ is a *proper*, *left-invariant* metric on *G*.

Example

•
$$G = \mathbb{Z}$$
, $S = \{-1, 0, 1\}$. Then $d(m, n) = |m - n|$.

•
$$G = \mathbb{Z}^d$$
, $S = \{\pm \mathbf{e}_i : i = 1, 2, ..., d\} \cup \{\mathbf{0}\}$. Then $d(\mathbf{m}, \mathbf{n}) = \sum_{i=1}^d |m_i - n_i|$

- G countable discrete group
- S finite generating set such that $e \in S$ and $S^{-1} = S$
- d(g, h) = smallest number of generators connecting g and h

Then $d: G \times G \rightarrow \mathbb{R}$ is a *proper*, *left-invariant* metric on *G*.

Example

•
$$G = \mathbb{Z}$$
, $S = \{-1, 0, 1\}$. Then $d(m, n) = |m - n|$.

•
$$G = \mathbb{Z}^d$$
, $S = \{\pm \mathbf{e}_i : i = 1, 2, ..., d\} \cup \{\mathbf{0}\}$. Then $d(\mathbf{m}, \mathbf{n}) = \sum_{i=1}^d |m_i - n_i|$

Question

How does the metric depend on the generating set?

Hung-Chang Liao (WWU)

Coarse equivalence

Definition

A map $f : (X, d_X) \to (Y, d_Y)$ is **uniformly expansive** if for any A > 0 there exists B > 0 such that $d_X(x, y) < A$ implies $d_Y(f(x), f(y)) < B$ for all x, y.

Coarse equivalence

Definition

A map $f : (X, d_X) \to (Y, d_Y)$ is **uniformly expansive** if for any A > 0 there exists B > 0 such that $d_X(x, y) < A$ implies $d_Y(f(x), f(y)) < B$ for all x, y.

Definition

Two maps $f, g: (X, d_X) \to (Y, d_Y)$ are **close** if there exists K > 0 such that $d_Y(f(x), g(x)) < K$ for all x.

Coarse equivalence

Definition

A map $f : (X, d_X) \to (Y, d_Y)$ is **uniformly expansive** if for any A > 0 there exists B > 0 such that $d_X(x, y) < A$ implies $d_Y(f(x), f(y)) < B$ for all x, y.

Definition

Two maps $f, g: (X, d_X) \to (Y, d_Y)$ are **close** if there exists K > 0 such that $d_Y(f(x), g(x)) < K$ for all x.

Definition

A uniformly expansive map $f : X \to Y$ is a **coarse equivalence** if there exists a uniformly expansive map $g : Y \to X$ such that $g \circ f$ is close to id_X and $f \circ g$ is close to id_Y .

<ロト </p>

Examples

Example

- The inclusion map *ι* : Z → R is a coarse equivalence. A "coarse inverse" of *ι* is given by the floor map *x* → ⌊*x*⌋.
- Any map between two bounded spaces is a coarse equivalence.
- Let *H* be a finite index subgroup of *G*. Then *H* and *G* are coarsely equivalent.
- Let G be a finitely generated group. Then G is coarsely equivalent to its Cayley graph.

Examples

Example

- The inclusion map *ι* : Z → R is a coarse equivalence. A "coarse inverse" of *ι* is given by the floor map *x* → ⌊*x*⌋.
- Any map between two bounded spaces is a coarse equivalence.
- Let *H* be a finite index subgroup of *G*. Then *H* and *G* are coarsely equivalent.
- Let G be a finitely generated group. Then G is coarsely equivalent to its Cayley graph.

Non-example

The set
$$\{\pm n^2 : n \in \mathbb{N}\} = \{\dots, -16, -9, -4, -1, 0, 1, 4, 9, 16, \dots\}$$
 is **not** coarsely equivalent to \mathbb{Z} .

How does the metric depend on the generating set?

How does the metric depend on the generating set?

Theorem

Let d and d' be two proper left-invariant metrics on G. Then the $id: (G, d) \rightarrow (G, d')$ is a (bijective) coarse equivalence.

How does the metric depend on the generating set?

Theorem

Let d and d' be two proper left-invariant metrics on G. Then the $id: (G, d) \rightarrow (G, d')$ is a (bijective) coarse equivalence.

In fact, everything works for groups which are **not** finitely generated:

Theorem (Tu)

Let G be a countable group. Then there exists a proper left-invariant metric d on G, and it is unique up to (bijective) coarse equivalence.

・ロト ・ 同ト ・ ヨト ・ ヨ

Uniform Roe algebras

Let (X, d) be a countable metric space.

Definition

An operator T in $B(\ell^2(X))$ is said to have **finite propagation** if there exists S > 0 such that $\langle T\delta_y, \delta_x \rangle = 0$ whenever $d(x, y) \ge S$.

Let (X, d) be a countable metric space.

Definition

An operator T in $B(\ell^2(X))$ is said to have **finite propagation** if there exists S > 0 such that $\langle T\delta_y, \delta_x \rangle = 0$ whenever $d(x, y) \ge S$.

- $\mathbb{C}^*_u[X]$ the collection of all operators with finite propagation.
- $C_u^*(X)$ the norm closure of $\mathbb{C}_u^*[X]$ (uniform Roe algebra)

Let (X, d) be a countable metric space.

Definition

An operator T in $B(\ell^2(X))$ is said to have **finite propagation** if there exists S > 0 such that $\langle T\delta_y, \delta_x \rangle = 0$ whenever $d(x, y) \ge S$.

- $\mathbb{C}^*_u[X]$ the collection of all operators with finite propagation.
- $C_u^*(X)$ the norm closure of $\mathbb{C}_u^*[X]$ (uniform Roe algebra)

Example

When X is finite,
$$C_u^*(X) = B(\ell^2(X)) \cong M_{|X|}(\mathbb{C}).$$

・ロト ・ 同ト ・ ヨト ・ ヨ

- X, Y bijectively coarsely equivalent $\implies C_u^*(X) \cong C_u^*(Y)$.
- X, Y coarsely equivalent $\implies C^*_u(X) \sim_{Morita} C^*_u(Y)$

- X, Y bijectively coarsely equivalent $\implies C^*_u(X) \cong C^*_u(Y)$.
- X, Y coarsely equivalent $\implies C_u^*(X) \sim_{Morita} C_u^*(Y)$

Theorem (Špakula-Willett)

The converse holds in many cases.

- X, Y bijectively coarsely equivalent $\implies C_u^*(X) \cong C_u^*(Y)$.
- X, Y coarsely equivalent $\implies C_u^*(X) \sim_{Morita} C_u^*(Y)$

Theorem (Špakula-Willett)

The converse holds in many cases.

Theorem (Ozawa, Skandalis-Tu-Yu)

 $C_u^*(G)$ nuclear \iff G is exact. More generally, $C_u^*(X)$ is nuclear \iff X has Property (A).

- X, Y bijectively coarsely equivalent $\implies C_u^*(X) \cong C_u^*(Y)$.
- X, Y coarsely equivalent $\implies C_u^*(X) \sim_{Morita} C_u^*(Y)$

Theorem (Špakula-Willett)

The converse holds in many cases.

Theorem (Ozawa, Skandalis-Tu-Yu)

 $C_u^*(G)$ nuclear \iff G is exact. More generally, $C_u^*(X)$ is nuclear \iff X has Property (A).

Theorem (Rørdam-Sierakowski)

 $C^*_u(G)$ is properly infinite $\iff G$ is non-amenable.

Hung-Chang Liao (WWU)

August 10, 2017

< ロ > < 同 > < 三 > < 三

Definition

A group G is **locally finite** if every finitely generated subgroup of G is finite.

Definition

A group G is **locally finite** if every finitely generated subgroup of G is finite.

Example

- Every finite group is locally finite.
- An infinite direct sum of finite groups, such as $\bigoplus_{i=0}^{\infty} \mathbb{Z}/2\mathbb{Z}$, is locally finite
- $S_{\infty} = \{$ finitary permutation of $\mathbb{N}\}$ is locally finite.
- \mathbb{Q}/\mathbb{Z} is locally finite.

Asymptotic dimension

Let (X, d) be a metric space. The **asymptotic dimension** of X, denoted $\operatorname{asdim}(X)$, is the "large scale covering dimension" of the space X. It is invariant under coarse equivalence.

Asymptotic dimension

Let (X, d) be a metric space. The **asymptotic dimension** of X, denoted $\operatorname{asdim}(X)$, is the "large scale covering dimension" of the space X. It is invariant under coarse equivalence.

Example

•
$$\operatorname{asdim}(\mathbb{Z}^d) = d$$

- If X is bounded, then $\operatorname{asdim}(X) = 0$.
- If $X = \{\pm n^2 : n \in \mathbb{N}\}$, then $\operatorname{asdim}(X) = 0$ (therefore we know X and \mathbb{Z} are not coarsely equivalent).

Asymptotic dimension

Let (X, d) be a metric space. The **asymptotic dimension** of X, denoted $\operatorname{asdim}(X)$, is the "large scale covering dimension" of the space X. It is invariant under coarse equivalence.

Example

•
$$\operatorname{asdim}(\mathbb{Z}^d) = d$$

- If X is bounded, then $\operatorname{asdim}(X) = 0$.
- If $X = \{\pm n^2 : n \in \mathbb{N}\}$, then $\operatorname{asdim}(X) = 0$ (therefore we know X and \mathbb{Z} are not coarsely equivalent).

Theorem (Smith)

Let G be a countable group. Then G is locally finite if and only if $\operatorname{asdim}(G) = 0$.

(日) (同) (三) (三)

C^* -characterizations of local finiteness

We say a C^* -algebra A is **locally finite-dimensional** if for any finite subset $F \subseteq A$ and $\varepsilon > 0$ there exists a finite-dimensional subalgebra B such that $d(x, B) < \varepsilon$ for all $x \in F$.

C^* -characterizations of local finiteness

We say a C^* -algebra A is **locally finite-dimensional** if for any finite subset $F \subseteq A$ and $\varepsilon > 0$ there exists a finite-dimensional subalgebra B such that $d(x, B) < \varepsilon$ for all $x \in F$.

Theorem (Winter-Zacharias, Scarparo)

Let G be a countable group. Then the following are equivalent:

- G is locally finite;
- 2 $C_u^*(G)$ is locally finite-dimensional;
- O $C_u^*(G)$ is finite.

C^* -characterizations of local finiteness

We say a C^* -algebra A is **locally finite-dimensional** if for any finite subset $F \subseteq A$ and $\varepsilon > 0$ there exists a finite-dimensional subalgebra B such that $d(x, B) < \varepsilon$ for all $x \in F$.

Theorem (Winter-Zacharias, Scarparo)

Let G be a countable group. Then the following are equivalent:

- G is locally finite;
- 2 $C_u^*(G)$ is locally finite-dimensional;
- C^{*}_u(G) is finite.
 - (1) \implies (2): Winter-Zacharias on nuclear dimension.
 - (3) \implies (1): Scarparo's work on locally finite actions.

K-theory

Question

K-theory encodes everything of separable locally finite-dimensional C^* -algebras (Elliott's classification theorem). How much information does it carry in the case of $C^*_u(G)$?

K-theory encodes everything of separable locally finite-dimensional C^* -algebras (Elliott's classification theorem). How much information does it carry in the case of $C^*_u(G)$?

Theorem (Li-L.)

Let G and H be countable locally finite groups. Then the following are equivalent:

- G and H are bijectively coarsely equivalent;
- 2 $C_u^*(G)$ and $C_u^*(H)$ are *-isomorphic;
- K₀(C^{*}_u(G)) and K₀(C^{*}_u(H)) are isomorphic as ordered abelian groups with distinguished units.